Bacterial voltage-gated sodium channels (BacNa(V)s) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart.

نویسندگان

  • Jian Payandeh
  • Daniel L Minor
چکیده

Voltage-gated sodium channels (Na(V)s) provide the initial electrical signal that drives action potential generation in many excitable cells of the brain, heart, and nervous system. For more than 60years, functional studies of Na(V)s have occupied a central place in physiological and biophysical investigation of the molecular basis of excitability. Recently, structural studies of members of a large family of bacterial voltage-gated sodium channels (BacNa(V)s) prevalent in soil, marine, and salt lake environments that bear many of the core features of eukaryotic Na(V)s have reframed ideas for voltage-gated channel function, ion selectivity, and pharmacology. Here, we analyze the recent advances, unanswered questions, and potential of BacNa(V)s as templates for drug development efforts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation

Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfo...

متن کامل

Structural Basis for Pharmacology of Voltage-Gated Sodium and Calcium Channels.

Voltage-gated sodium channels initiate action potentials in nerve, muscle, and other electrically excitable cells. Voltage-gated calcium channels are activated by depolarization during action potentials, and calcium influx through them is the key second messenger of electrical signaling, initiating secretion, contraction, neurotransmission, gene transcription, and many other intracellular proce...

متن کامل

Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins.

Voltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI-DIV) to monitor the activity of individual voltage-sensors and...

متن کامل

Expression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus

Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 427 1  شماره 

صفحات  -

تاریخ انتشار 2015